SEICA FLYING PROBE TEST:
WHY AND WHICH SYSTEM?
During the last decade, flying probe test have continued to evolve and now offer such a wide range of performances, that it is sometimes difficult for the user to choose the most suitable architecture and configuration.
The initial prerogative that roused the interest towards flying probe testers was certainly the lack of fixtures dedicated to a specific kind of board and hence the possibility to set up test programs without the recurring costs needed to build up a specific bed of nails destined to die along with the product to be tested. This is still one of the biggest advantages that can make a flying probe system more desirable than a traditional bed of nails in-circuit system. But the “brave” users, or, better, the farsighted ones, who successfully tried out a flying probe system about ten years ago , gradually came to realize their great potential and began to require higher and higher performances, inducing the test systems manufacturers to invest significantly in the research and development of new measurement, mechanical motion and software technologies to enrich the flying probe testers with new functions. This great technological effort has produced results that were inconceivable until a few years ago, transforming the flying probe tester used for simple MDA testing of passive components into a real multifunctional test platform, providing the user with several advantages in terms of speed, reliability, fault coverage and cost of test.
As often happens when a type of equipment has undergone years of development , and improvements, and becomes a mature technology, the range of offers available become so wide and varied that the choice is made more and more complicated for the end user.
Those that are considering the purchase of a flying probe test system today must make strategically important and often not obvious choices concerning the system architecture strictly depending on the test requirements of the customer himself. To choose the most suitable architecture, it is important to know, with good approximation, what and how is to be tested, but it is often enough to have a couple of clear ideas that serve to orient the choice towards the best solution.
Advantages of Seica Flying Probe Testing:
- Eliminates fixturing costs and time
- Fast test program development, easy integration of design changes
- Process flexibility
- Circuit access, even in the absence of test points
- Controlled probe contact, programmable for any type of board
- Different test solutions and approaches integrated in a single test system
- Intrinsic positioning and measurement precision
SEICA FLYING PROBE TEST ENVIRONMENTS
MANUFACTURING, REPAIR, REVERSE ENGINEERING, PROTOTYPING and NEW PRODUCT INTRODUCTION (NPI), are typically the environments where PILOT NEXT>Series are implemented.
The Seica VIP platform software, VIVA NEXT> series, common to all of the PILOT NEXT>Series systems, allows a completely versatile test approach, from simple ICT to functional tests, from automatic, net-oriented tests to the reconstruction of the data and electrical schematics of boards coming from the field.
MANUFACTURING: the evolution of the test algorithms and strategies present in the VIVA software mean that the PILOT NEXT>Series testers provide fast, high performance production testing. The diverse, integrated test technologies such as optical inspection, thermal analysis, boundary scan, power-on functional test, and the possibility to include other processes such as on-board programming (OBP), allow the user to streamline the various production phases, optimizing process time.
REPAIR: There are different types of requirements for diagnosing faulty boards, depending on the characteristics of the boards themselves and the specific repair situation (manufacturing defects, field returns, repair depot, etc.).
ThePILOT NEXT>Series line has an extensive tool set developed to address all of the repair scenarios, and the intrinsic flexibility of the flying probe test approach allows the user to implement from one to all of the test techniques available, to optimize the repair process and results.
PROTOTYPING AND NPI: by exploiting the versatility of the PILOT NEXT>Series hardware and software, it is possible to obtain immediate data from the testing of prototypes, avoiding costs and time for building preliminary fixtures or test benches, ensuring maximum fault coverage in the minimum time.
REVERSE ENGINEERING (RE): the necessity of managing field returns is a constant in today’s industry, and in some sectors, such as transportation, infrastructure, communication and defense, the repair returns are often older boards which do not have complete documentation, schematics or construction data. The double-side solutions offered in the PILOT NEXT>Series line are ideally suited to carry out reverse-engineering operations, and include all of the necessary software tools to enable the reconstruction of the electrical schematics and the CAD data of the board under repair. This helps to facilitate fault detection and repair, and to produce the documentation necessary for legacy support of the product.